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ABSTRACT

Parker Solar Probe (PSP) observed sub-Alfvénic solar wind intervals during

encounters 8 - 14, and low-frequency magnetohydrodynamic turbulence in these

regions may differ from that in super-Alfvénic wind. We apply a new mode-

decomposition analysis (Zank et al. 2023) to the sub-Alfvénic flow observed by

PSP on 2021 April 28, identifying and characterizing entropy, magnetic islands,

forward and backward Alfvén waves, including weakly/non-propagating Alfvén

vortices, forward and backward fast and slow magnetosonic modes. Density fluc-

tuations are primarily and almost equally entropy and backward propagating

slow magnetosonic modes. The mode-decomposition provides phase informa-

tion (frequency and wavenumber k) for each mode. Entropy-density fluctuations

have a wavenumber anisotropy k∥ ≫ k⊥ whereas slow mode density fluctua-

tions have k⊥ > k∥. Magnetic field fluctuations are primarily magnetic island

modes (δBi) with an O(1) smaller contribution from uni-directionally propagat-

ing Alfvén waves (δBA+) giving a variance anisotropy of ⟨δBi2⟩/⟨δBA2⟩ = 4.1.

Incompressible magnetic fluctuations dominate compressible contributions from

fast and slow magnetosonic modes. The magnetic island spectrum is Kolmogorov-

like k−1.6
⊥ in perpendicular wavenumber and the uni-directional Alfvén wave spec-

tra are k−1.6
∥ and k−1.5

⊥ . Fast magnetosonic modes propagate at essentially the

Alfvén speed with anti-correlated transverse velocity and magnetic field fluctu-

ations and are almost exclusively magnetic due to βp ≪ 1. Transverse velocity

fluctuations are the dominant velocity component in fast magnetosonic modes

and longitudinal fluctuations dominate in slow modes. Mode-decomposition is

an effective tool in identifying the basic building blocks of MHD turbulence and

provides detailed phase information about each of the modes.
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1. Introduction

The first entry of the NASA Parker Solar Probe (PSP) spacecraft into a sub-Alfvénic

solar wind flow lasted for 5 hours on 2021 April 28, and has been studied extensively

(Kasper et al. 2021; Zank et al. 2022; Zhao et al. 2022a; Bandyopadhyay et al. 2022; Alberti

et al. 2022; Zhang et al. 2022; Liu et al. 2023; Jiao et al. 2024). Unlike the super-Alfvénic

solar wind, the turbulence properties of this new solar wind environment are connected

magnetically to the surface of the Sun. Sub-Alfvénic solar wind intervals have now been

observed since encounter 8 through to encounter 14. Jiao et al. (2024) have traced magnetic

fields to locate the source of the sub-Alfvénic intervals or streams, finding that the sources

are either the boundaries inside coronal holes or small regions of open magnetic field.

They find that the location of the Alfvén surface for these flows varies between 15 and 24

solar radii R⊙, which is larger than the canonical value of 11 - 12 R⊙ assumed typically

for fast solar wind originating from an open coronal hole. Jiao et al. (2024) find that the

sub-Alfvénic intervals so far observed all exhibit similar properties and origins.

While potentially different from the physics governing large open coronal holes

or closed magnetic field regions, it is nonetheless instructive to better understand the

nature of turbulence and the potential origin of super-Alfvénic flows in the sub-Alfvénic

regions that PSP has so far discovered. The focus on the properties of turbulence in this

unexplored region of the solar wind reflects the idea that the dissipation of low-frequency

magnetohydrodynamic (MHD) turbulent fluctuations provides the distributed heating

source for the solar corona that results in the driving of the solar wind. Two basic coronal

turbulence models have been advanced, one treating the turbulence as predominantly

slab (Matthaeus et al. 1999) and the other as primarily non-propagating 2D nonlinear

structures such as small scale magnetic flux ropes and Alfvén vortices plus a minority slab

component (Zank et al. 2018), both of which have been reviewed in Zank et al. (2021).
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Both models have since been refined and extended by, e.g., Oughton et al. (2001); Dmitruk

et al. (2001, 2002); Suzuki & Inutsuka (2005); Cranmer et al. (2007); Cranmer & van

Ballegooijen (2010); Cranmer et al. (2013); Wang et al. (2009); Chandran & Hollweg (2009);

Verdini et al. (2010); Matsumoto & Shibata (2010); Chandran et al. (2011); Usmanov

et al. (2011); Lionello et al. (2014); Usmanov et al. (2014); Woolsey & Cranmer (2014);

Shoda et al. (2018); Chandran & Perez (2019); Chandran (2021) for Alfvén wave or slab

turbulence heating and driving, and by Zank et al. (2021); Adhikari et al. (2020, 2022);

Telloni et al. (2022a,b, 2023) for 2D nonlinear structures. PSP observations (Bale et al.

2023; Raouafi et al. 2023), Solar Dynamics Observatory (SDO) spacecraft observations

(Uritsky et al. 2023), and theory (Zank et al. 2018; Priest et al. 2018; Pontin et al. 2024)

have identified small- and multi-scale magnetic reconnection low in the corona as a possible

mechanism for solar coronal heating. Such small- and multi-scale reconnection can be

expected to generate slab (Matthaeus et al. 1999), 2D (Zank et al. 2018), or an admixture

of magnetohydrodynamic (MHD) turbulence low in the corona. Exactly which form is

dominant, if any, is not known.

Identifying the underlying character of the turbulent fluctuations in the coronal flow

is key to distinguishing between the two competing turbulence models of solar coronal

heating. The turbulence models are based typically on either fully incompressible 3D

MHD regardless of plasma beta or nearly incompressible MHD in which the plasma beta

βp (= P/(B2/2µ0) where P is the plasma pressure, B = |B|, B the magnetic field, and

µ0 the magnetic permeability) distinguishes the leading-order incompressible description

(2D incompressible MHD for βp ≪ 1 or O(1) or 3D incompressible MHD for βp ≫ 1)

(Zank & Matthaeus 1992, 1993; Zank et al. 2017). The associated spectral anisotropy of

incompressible 3D MHD is typically expressed via the Goldreich & Sridhar (1995) critical

balance theory in which it is hypothesized that the nonlinear and Alfvénic timescales are

balanced. This yields e.g., a reduced 1D wavenumber (k) spectrum for Elsässer fluctuations
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of the form k
−5/3
⊥ and k−2

∥ , where k⊥ = |k⊥| and k∥ are wavenumbers perpendicular and

parallel to the mean magnetic field B0 provided the normalized cross helicity σc = 0 (where

σc = u · b/√µ0ρ0/ (u
2 + b2/(µ0ρ0)) and u is the fluctuating velocity and b/

√
µ0ρ0 the

fluctuating Alfvén velocity, and ρ0 the mean fluid density). There is mounting evidence

(Telloni et al. 2019; Wang et al. 2015; Zhao et al. 2021a; Zank et al. 2022) that highly

field-aligned flows with |σc| ≃ 1, i.e., populated by uni-directionally propagating Alfvén

waves have reduced 1D spectra of the form k
−5/3
∥ to k

−3/2
∥ , in contrast to the predictions of

critical balance. However, based on the spectral theory developed in Zank et al. (2020b)

for the 2D + slab superposition model with a dominant 2D component (Matthaeus et al.

1990; Bieber et al. 1994, 1996; Saur & Bieber 1999; Forman et al. 2011) such spectra can

be explained (Zank et al. 2022; Zhao et al. 2022c,b,a) as a consequence of sweeping (Zhao

et al. 2023a) of the slab turbulence by the dominant 2D modes, which was described as

“scattering” in Zank et al. (2020b).

To distinguish between these two descriptions of low-frequency turbulence, one would

ideally like to separate Alfvén waves from advected structures. In a similar vein, one would

like to distinguish between density fluctuations (e.g., Kontar et al. 2023) generated by

compressible fast and slow magnetosonic waves and advected density fluctuations (entropy

modes). Zank et al. (2023) revisited and developed a very general mode-decomposition

method that identifies wave modes and advected structures such as magnetic islands or

entropy modes while evaluating the corresponding phase information. By utilizing the

newly developed mode-decomposition technique, we re-analyze the first sub-Alfvénic solar

wind interval observed by PSP. In so doing, we 1) identify all the possible low-frequency

MHD modes, including advected modes, that are present in the observed 5-hour plasma

parcel, and 2) derive the spectral characteristics of all the identified modes. Of particular

note is that, because the analysis resides within a linear framework, we can exploit the

corresponding dispersion relations for each mode to relate frequency to wavenumber and
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thereby present wavenumber spectra (reduced power spectral densities (PSDs) as functions

of k, k⊥, and k∥) without invoking Taylor’s hypothesis for the propagating or wave modes.

From this analysis, a clear characterization of low-frequency inertial range MHD fluctuations

is obtained in the sub-Alfvénic solar wind, from which the relative contribution of the

various components can be extracted.

It should be noted that a “classical” mode-decomposition analysis (Glassmeier et al.

1995) was applied to various plasma intervals observed during the first PSP encounter by

Chaston et al. (2020) and Zhao et al. (2021b). Unlike the method introduced by Zank

et al. (2023), the classical method projects the observed fluctuations onto a subspace of

possible MHD modes comprising only three possible modes, the planar Alfvén, and fast

and slow ms modes, and all three modes share the same wave vector (Zhao et al. 2021b).

The classical approach does not include advected modes (entropy modes, magnetic islands,

Alfvén vortices) nor the full spherical Alfvén mode, all of which are incorporated in the

analysis presented in Zank et al. (2023), together with the fast and slow ms modes. The

Zank et al. (2023) analysis yields the phase information for each possible mode, therefore

relating fluctuations observed at a particular frequency to the wavenumber of the specific

mode. Because the Chaston et al. (2020) and Zhao et al. (2021b) analyses project the

observed fluctuations onto a subspace of the full MHD mode space, one cannot meaningfully

compare their conclusions, limited as they are by the assumptions underlying the analysis,

to the detailed results presented here. A mode-decomposition analysis of the super-Alfvénic

young solar wind is therefore underway using the Zank et al. (2023) approach to effect such

a comparison.

We emphasize that the mode-decomposition analysis is not a theory of turbulence in

any sense but is rather a tool to identify small amplitude MHD fluctuations in a particular

plasma parcel, from which we can identify in part the building blocks of a turbulent fluid.
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In the following section, we review briefly the new mode-decomposition technique,

focusing particularly on how to apply the method to sub-Alfvénic flows. Thereafter, in §3,

we identify the MHD modes present in the first 5-hour sub-Alfvénic solar wind flow and

present their detailed spectral characteristics. The implications of our results for turbulence

models thought to be responsible for heating the solar corona are discussed in §4. The

algorithm and formulae used in the mode-decomposition analysis are listed in the Appendix,

correcting some typos that were present in the original paper (Zank et al. 2023).

2. MHD Mode-decomposition

Here we expand the mode-decomposition technique for MHD introduced in Zank

et al. (2023) to sub-Alfvénic flows. The primary difference between this and the prior

analysis is in the identification of the time intervals to ensure that the linear analysis

remains valid for the time over which the decomposition is evaluated. Specifically, in

analyzing the superposition of the various fluctuating modes, the normal modes expansion

of the measured plasma or magnetic field fluctuation about a “decoherence” time ∆t

must ensure that the decomposition extracts a coherent superposition of the constituent

modes. Here we consider a plasma parcel in a modestly super- or sub-Alfvénic flowing

medium such as the solar wind, restricting our attention to relatively quiescent flows that

do not contain shocks, large-scale heliospheric current sheet crossings, and other unspecified

large-amplitude/non-linear events. In analyzing a fluid parcel of length ℓ say, loosely

defined to be along the radial direction, which in the coronal case is roughly parallel to the

mean magnetic field (in principle, we need to consider the radial, tangential, and normal

directions more generally but the argument carries over easily), we need to consider three

timescales that help determine ∆t, these being 1) the characteristic timescale τprop for

fluctuations to propagate out of the plasma parcel; 2) the nonlinear timescale τnl, and 3)
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the Alfvén timescale τA.

For the mode-decomposition to apply, we need to ensure that the waves do not

propagate outside the plasma parcel during the time ∆t of the analysis (point 1 above),

and secondly (points 2 and 3) that the fluctuations in the parcel do not undergo nonlinear

interactions and thus violate linearity. This imposes the following conditions on the choice

of ∆t. To address 1), the phase speed of a propagating fluctuation in the fluid frame

is Vph = ω/k where ω is the wave frequency (advected fluctuations do not need to be

considered obviously). Hence, we have τprop ∼ ℓ/(ω/k), which yields the requirement that

the time intervals ∆t ≪ τprop ∼ ℓ/(ω/k). Since ℓ = |U|T , where T is the duration of

the plasma parcel as it is advected past the spacecraft at a velocity U (i.e., the relative

speed of the plasma flow and the spacecraft), we therefore require ∆t ≪ |U|T/(ω/k). For

highly super-Alfvénic and supersonic flows, |U| ∼ U0 ≫ VA0 (U0 and VA0 are the mean flow

and Alfvén speed respectively), we therefore have the condition that ∆t/T ≪ U0/(ω/k)

which is ≫ 1 for a supersonic and super-Alfvénic flow. However, for an Alfvénic flow

U0 ∼ VA0 in the solar corona where βp ≪ 1 typically (implying that the Alfvén and fast

magnetosonic speeds are similar since V f±
p ≃ VA0

[
1 + (γ/4)βp sin

2 θf±
]
when βp ≪ 1, and is

much large than the slow magnetosonic speed), being about 0.1 for this particular interval,

we have instead that ∆t/T ≪ (U0 + VA0)/(ω/k) ∼ 2 since smaller scale fluctuations will

be swept by longer wavelength fluctuations, i.e., |U| ≃ U0 + VA0. Hence, for modestly

super- or sub-Alfvénic flows, we require ∆t/T ≪ O(1). Thus, for a plasma parcel of

size ℓ ≃ U0T , the full parcel for an Alfvénic flow must be broken into subintervals to

ensure ∆t ≪ T (see Figure 12 in Zank et al. (2023)) and the wave mode-decomposition

applied to each subinterval as described in Zank et al. (2023), Figure 12. Secondly, the

nonlinear timescale is expressed as τ−1
nl ∼ ⟨z2⟩1/2k, where z2 is the fluctuating Elsásser

energy. We require that ∆t ≪ τnl ∼ ⟨z2⟩−1/2k−1 ∼ ℓ/⟨z2⟩1/2. This yields the condition

∆t ≪ (U0 + VA0)T/⟨u2⟩1/2. For U0 ≫ VA0, ∆t/T ≪ U0/⟨u2⟩1/2 (≫ 1), and for U0 ∼ VA0,
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∆t/T ≪ 2VA0/⟨u2⟩1/2 ∼ 2U0/⟨u2⟩1/2 (≫ 1).

Finally, the Alfvén timescale for nonlinear interactions can be expressed as

τ−1
A = VA0k(1 − σAc

2
) (Zank et al. 2020b), where σAc is the cross helicity of Alfvénic

fluctuations. For approximately equally counter-propagating Alfvén modes, σAc ≃ 0

and the Alfvén timescale is the familiar τ−1
A ∼ VA0k. In this case, we require that

∆t ≪ 1/(VA0k) < ℓ/VA0 ∼ (U0 + VA0)T/VA0. As before, for super-Alfvénic flows U0 ≫ VA0

implies ∆t/T ≪ U0/VA0 (≫ 1) whereas for U0 ∼ VA0 we have ∆t/T ≪ O(1), and in the

latter case, the analysis needs to be done on a series of subintervals. By contrast, for

unidirectionally propagating Alfvén modes, |σAc | ≃ 1 and hence τ−1
A = 0, i.e., nonlinear

interactions do not occur (other than via “sweeping” or “scattering” - see Zank et al. (2017,

2020b) which we do not address here), in which case only the timescale τprop is relevant.

T is fixed and corresponds to the period of the observation, which in this case was

5 hours for the sub-Alfvénic wind. During those 5 hours, there were only relatively

small changes in the basic background plasma and magnetic field parameters so one can

reasonably consider the whole interval. Had there been major changes, such as a shock

wave or a heliospheric current sheet crossing, the corresponding “smooth and relatively

unchanging” period of the plasma observed would have defined T . As described above, it is

necessary and sufficient to choose ∆t to satisfy ∆t/T ≪ 1, so since T = 5 hours, choosing

∆t = 30 minutes implies ∆t/T = 0.1, which should be a sufficiently small interval while

retaining a reasonable level of statistical accuracy.

We consider the first sub-Alfvenic interval (Kasper et al. 2021) measured by the

FIELDS (Bale et al. 2016) and SWEAP (Kasper et al. 2016) instruments on the NASA

Parker Solar Probe spacecraft Fox et al. (2016), observed between 09:30 and 14:40 UT on

2021 April 28 at ∼ 0.1 au. The basic plasma parameters for this period are depicted in

Figure 1 of Zank et al. (2022) between the dashed lines. During this time, MA ≡ U/VA ≤ 1
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and βp ∼ 10−1. Hence, the fast magnetosonic speed is only a little greater than VA.

Since both the propagation and Alfvén timescales impose the decoherence time condition

∆t/T ≪ O(1), we subdivide the 5-hour interval into 10 30-minute intervals, calculate the

relevant means of the plasma and magnetic field variables for each, and then perform

the corresponding mode-decomposition analysis on each of the subintervals. As in Zank

et al. (2023) (see their Figure 1), the coordinate system in each subinterval uses the mean

magnetic field B0 = B0ẑ to define the ẑ direction, x̂ and ŷ complete the triad, and the mean

flow velocity U0 is, without loss of generality, rotated into the (x, z)-plane. For completeness

and to correct some typos in Zank et al. (2023), the mode-decomposition algorithm is listed

in the Appendix. Based on the re-constructed subinterval mode-decomposition analysis, we

perform a spectral analysis of the individual low-frequency MHD modes that are present in

the 5-hour sub-Alfvénic interval.

3. Decomposition Results

As described in Zank et al. (2023), after subdividing the 5-hour interval into 10

30-minute intervals, we compute mean values within each interval for the plasma and

magnetic field variables, and then apply the mode-decomposition algorithm to identify the

following MHD linear/small-amplitude modes; entropy modes, forward (+) and backward

(−) fast (f) and slow (s) magnetosonic (ms) modes, magnetic island (i) or flux rope

modes, and forward (+) and backward (−) Alfvén (A) modes within each interval. The

mode-decomposition evaluates both the amplitude and the phase (ω,k) (ω the frequency

and k the wavenumber) of each MHD mode.

The three panels of Figure 1 show, from top to bottom, the time series of the

normalized fluctuating density for the composite 10 30-minute subintervals associated

with non-propagating i.e., advected entropy modes δρe/ρ0, forward and backward fast
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Fig. 1.— Time series of the normalized density fluctuations over the composite 10 30-minute

subintervals of the 5-hour sub-Alfvénic interval. Top panel: Normalized density fluctuations for

the entropy modes. Middle panel: Normalized density fluctuations for the forward (black curve)

and backward (orange curve) fast magnetosonic modes. Bottom panel: Normalized density

fluctuations for the forward (black curve) and backward (orange curve) slow magnetosonic modes.
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Fig. 2.— Power spectral density (PSDs) plots for the fluctuating density in frequency f (top

panels), wavenumber k and parallel wavenumber k∥ (middle panels), and perpendicular wavenumber

k⊥ (bottom left) and pressure in wavenumber k (bottom right). The top left panel shows the entropy

(black curve) and forward slow (orange) and fast (blue) ms density PSDs, and the top right panel

shows the entropy (black curve) and backward slow (orange) and fast (blue) ms density PSDs. The

middle left and right panels show the entropy (black curve) and backward fast (blue) and backward

slow (orange) ms density PSDs as a function of wavenumber k and k∥ respectively. The bottom

left panel shows the corresponding PSDs as a function of k⊥. The bottom right panel shows the

fluctuating pressure PSD for the backward slow (orange) and fast (blue) ms modes. The red and

blue lines show power laws with indices −5/3 and −3/2 respectively.
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magnetosonic modes δρf±/ρ0, and forward and backward slow magnetosonic modes δρs±/ρ0.

Figure 1 shows that the backward propagating fast ms mode contributes negligibly to the

compressible density fluctuations in the sub-Alfvénic interval. The forward and backward

slow ms modes are comparable although somewhat dominated by the backward mode. This

is indeed borne out in Figure 2, which plots the power spectral density (PSD) of the density

fluctuations for the entropy and fast and slow forward and backward ms modes as a function

of frequency f (Hz) and wavenumber k (km−1).1 As noted above, the mode-decomposition,

being linear, relates the observed frequency to the wavenumber through the appropriate

dispersion relation (Zank et al. 2023), thereby avoiding the complications of Taylor’s

hypothesis in the sub-Alfvénic interval. For convenience, we list the transformations of

frequency to wavenumber for the different wave modes at the end of the Appendix, listing

the relevant equations from Zank et al. (2023). Evidently, the entropy and the backward

slow ms modes are the principle or dominant contributors to the density fluctuations in

this particular parcel of sub-Alfvénic wind. The top two panels show that the frequency

spectra for the entropic and magnetosonic modes are power laws in frequency. Power law

curves for f−5/3 and f−3/2 in red and blue respectively are overplotted to guide the eye.

The density variance associated with the entropy modes appears to be consistent with an

1In the sub-Alfvénic interval of 2021 April 28, the magnetic field strength is approximately

315 nT, for which the proton cyclotron frequency is about 4.8 Hz. We need to use both the

magnetic field data and the plasma data for the mode decomposition analysis. The resolution

of the combined data set is 3.5 seconds, corresponding to a Nyquist frequency of 0.14 Hz, as

shown in our spectra (see also Zank et al. (2022)). Owing to the limited resolution of the

plasma data, the proton cyclotron frequency is therefore much higher than the frequency

range we can consider. We consider MHD scales only, which have frequencies well below the

proton cyclotron frequency (∼ 4.8 Hz).
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f−5/3 power law while the ms modes have a density variance that appears to be better

described by a f−3/2 curve. The middle left panel shows the density PSDs for the entropy

and backward fast and backward slow ms modes in wavenumber, which closely resemble

k−5/3 (entropy and slow ms) and k−3/2 power laws respectively. Of particular interest is

the density PSD for the density fluctuations in light of Solar Orbiter Metis observations

reported by Telloni et al. (2023) describing the evolution of density fluctuations from 1.8 to

3 R⊙. Telloni et al. (2023) find that the spectral exponent of the density PSD changes from

−2.32 to −1.64 over this distance, regardless of whether the solar corona was observed in

low- or high-density regions. The evolution of the density spectrum towards a Kolmogorov

scaling was interpreted as the development of fully developed turbulence by about 3 R⊙.

As discussed in Telloni et al. (2023) and Zank et al. (2017, 2020b); Adhikari et al. (2023),

advected density fluctuations respond as a passive scalar to the velocity fluctuations,

particularly the 2D incompressible component associated with Alfvén vortices, to form a

Kolmogorov power law-like distribution in the density variance.

The right middle and left bottom plots show the density variances of the same modes

plotted as functions of parallel k∥ and perpendicular k⊥ wavenumber. Both the dominant

entropy and backward slow ms density fluctuations follow k
−5/3
∥ and k

−5/3
⊥ power laws

although both exhibit some flattening at higher k values. Both panels indicate that the

anisotropy of the dominant density fluctuations differs by mode, and this is discussed

further in Section 4.

Since the ms pressure fluctuations δpfs± are typically proportional to the corresponding

density fluctuations δρfs± (Zank & Matthaeus 1992, 1993; Zank et al. 2017, 2023) (although

see Zank et al. (1990) for a more complicated equation of state), the time series are not

plotted. However, in the bottom right panel of Figure 2, we plot the wavenumber PSDs for

the fluctuating ms pressures δpf− and δps−, illustrating that the backward slow ms mode
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pressure spectrum resembles a ∼ k−3/2 and the backward fast mode pressure spectrum a

∼ k−5/3 power law. Curiously, the −5/3 density spectrum is mapped to a −3/2 pressure

spectrum and vice versa.

The fluctuating magnetic field data is illustrated in Figure 3 (the time series) and

Figure 4 (spectral plots) for the components of the forward and backward fast (δBf±
x,y,z)

and slow (δBs±
x,y,z) ms modes, the magnetic island (δBi

x,y) modes, and the forward and

backward Alfvén (BA±
x,y ) waves. The magnetic island and Alfvénic modes possess of course

only incompressible transverse magnetic fluctuations while the ms modes possess both

transverse and longitudinal components. Figure 3 illustrates again that the backward

fast ms mode contributes negligibly to the compressible fluctuations, which are comprised

primarily of the forward and backward slow and the forward fast magnetosonic modes.

The incompressible transverse fluctuations are the dominant contribution to the magnetic

field energy density. Although apparent in Figure 3, this is particularly well illustrated in

the PSD plots of Figure 4. The top panels show PSDs as a function of f for all magnetic

modes, the middle panels as a function of the parallel wavenumber k∥ (where k = (k⊥, k∥))

for all but the magnetic island modes, and the bottom panels as a function of k⊥ = |k⊥| for

all magnetized modes. To guide the eye, we plot red and blue lines corresponding to power

laws with various indices (−1.6, −3/2 and −5/3).

The magnetic island mode is evidently the dominant population (Figure 4, bottom

left), followed by the forward Alfvén modes. From the top two panels, the magnetic island

frequency spectrum is consistent with a power law of the form f−1.6, which appears to be

quite similar to the backward Alfvén modes, whereas the forward Alfvén modes appear

to have a marginally flatter spectrum, perhaps more consistent with a f−3/2 spectrum in

frequency. The ms modes appear to have spectra slightly flatter than f−3/2. As shown in

the left middle and bottom plots of Figure 4, the forward and backward Alfvén modes can
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Fig. 3.— Time series of the magnetic field fluctuations over the composite 10 30-minute subin-

tervals of the 5-hour sub-Alfvénic interval showing normalized magnetic field fluctuations. Top

left panel: Parallel (z-component) magnetic field forward (black curve) and backward (orange

curve) (±) fast magnetosonic (ms) modes δBf±
z /B0. Middle left two panels: forward and back-

ward transverse magnetic field fluctuations δBf±
x,y for fast ms modes. Left bottom panel: forward

(black curve) and backward (orange curve) Alfvén (δBA±
x ) and advected magnetic island (δBi

x, blue

curve) modes. Top right panel: Parallel (z-component) magnetic field forward (black curve) and

backward (orange curve) (±) slow ms modes δBs±
z /B0. Middle right two panels: forward and

backward transverse magnetic field fluctuations δBs±
x,y for slow ms modes. Left bottom panel:

forward (black curve) and backward (orange curve) Alfvén (δBA±
y ) and advected magnetic island

(blue curve, δBi
y) modes.
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Fig. 4.— PSDs for the fluctuating magnetic field in frequency f (top two panels), parallel wavenum-

ber k∥ (middle three panels), and perpendicular wavenumber k⊥ (bottom three panels). The top

left panel shows the magnetic island (green curve), the forward Alfvén (black), forward fast (blue)

and forward slow (orange) ms mode PSDs, and the top right panel shows the magnetic island (green

curve), backward slow (orange) and fast (blue) ms and backward Alfvén mode PSDs. The middle

panels show from left to right PSDs in k∥ of the forward and backward Alfvén modes, the parallel

δBf
∥ , transverse δB

f
⊥, and total δBf of the forward fast mode (the backward propagating fast mode

is not shown - see Figure 3), and the corresponding PSDs for the backward propagating slow ms

mode. The bottom panels show from left to right PSDs in k⊥ of the magnetic island and forward

and backward Alfvén modes, the parallel δBf
∥ , transverse δBf

⊥, and total δBf of the forward fast

mode, and the corresponding quantities for the backward propagating slow ms mode.
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be described by power laws in the parallel and perpendicular wavenumbers as k−1.6
∥ , k−1.5

⊥

(forward) and k−1.5
∥ , k−1.5

⊥ (backward) respectively. The magnetic island spectrum has a

power law ∼ k−1.6
⊥ (bottom left panel), which, since it is an advected mode, is consistent

with the corresponding frequency PSD. The middle and rightmost panels of the middle and

bottom rows of Figure 4 plot the magnetic PSDs of the forward fast and backward slow ms

modes as functions of k∥ and k⊥ respectively (the two dominant compressible modes). The

fast and slow ms magnetic spectra have a modestly more significant longitudinal component

than transverse component and the spectral amplitude per logarithmic wavenumber

(δB2
∥dk∥,⊥) of the fast ms mode is at least an order of magnitude larger than that of the

slow ms mode. This is due to the fast magnetosonic mode being primarily magnetic and

the slow ms mode being essentially a sound wave in a low beta plasma. The spectra of the

longitudinal fluctuations are flatter than k−3/2 (fits suggest a range of power law indices

from −1.41 to −1.45 in k∥). The transverse fluctuations of the fast ms modes appear to

have a spectral index between −3/2 and −5/3 whereas those of the slow ms mode have

a very hard spectrum. The fast and slow ms spectra in k⊥, at least for the longitudinal

component, has a power law index of ∼ −3/2, whereas the transverse fluctuations may

possess a slightly steeper spectrum, possible ∼ k
−5/3
⊥ . The amplitudes of the compressible

ms magnetic PSD plots are significantly lower than those of the incompressible magnetic

PSD plots associated with both the magnetic islands and the forward Alfvénic modes.

Specifically, the amplitude of δB2dk⊥,∥ is at least an order of magnitude greater for the

magnetic island and forward Alfvén PSDs than the dominant forward fast ms mode PSD.

The incompressible magnetic field modes are therefore the dominant component compared

to the compressible component (see also Zhao et al. 2023b), indicating that the 5-hour

plasma parcel is essentially incompressible.

Unlike the anisotropy results of Bandyopadhyay & McComas (2021); Zhao et al.

(2022a), who found that the 2D:slab ratio of magnetic energies is ∼ 0.43 between 27.95 –
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64.5 R⊙, the mode-decomposition analysis indicates that in this sub-Alfvénic interval, 2D

magnetic islands are the dominant component of the transverse (and total) magnetic field

fluctuations rather than slab-like Alfvénic fluctuations. The energy density of the magnetic

island component ⟨δBi2⟩ in the 5-hour interval is found by integrating under the spectrum,

being ⟨δBi2⟩ = 1 × 106 nT2. By contrast, the energy density of the Alfvén component

⟨δBA2⟩ in the 5-hour interval is ⟨δBA2⟩ = 2.3× 105 nT2, which yields a variance anisotropy

of ⟨δBi2⟩/⟨δBA2⟩ = 4.1. This is the same as found by Bieber et al. (1996), i.e., a ratio of

4:1, for the supersonic solar wind at 1 au. Obviously, variance anisotropy found by Bieber

et al. (1996) was derived on the basis of a quite different set of methods and assumptions,

most notably that there was no distinction between transverse component contributions

from compressible and incompressible modes. The result presented here suggests that

indeed the plasma at 1 au measured in the Bieber et al. (1996) analysis was essentially

incompressible. As a nominal estimate of the energy density in 2D versus slab fluctuations,

this is in agreement with the ratio predicted of the variance anisotropy for NI MHD in the

βp ≪ 1 or O(1) regimes (Zank et al. 2020b).

Besides magnetic islands, highly oblique Alfvénic fluctuations are essentially quasi-2D

with k∥ ≪ k⊥ and are effectively non-propagating (see the discussion in the Appendix

of Zank et al. (2017)). Such highly oblique Alfvénic modes or Alfvén vortices form a

component of the leading order βp ≪ 1 or O(1) nearly incompressible MHD description

(Zank et al. 2017) and introduce quasi-2D velocity fluctuations. Since we can calculate

the phases of the Alfvén fluctuations via the mode-decomposition, we plot in Figure 5

the values of θA±. The left plot shows θA+, i.e., the obliquity of the forward propagating

Alfvén modes over the full 5-hour interval, illustrating that the waves are propagating

essentially along the background magnetic field (i.e., based on the 30-minute subinterval

backgrounds into which the full sub-Alfvénic flow is decomposed), and are clustered roughly

in the interval −25◦ ≤ θA+ ≤ 25◦, with some highly oblique Alfvén modes or Alfvén
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vortices. By contrast, the minority backward propagating Alfvén modes, as illustrated in

the right panel of Figure 5, exhibit a pronounced bimodal distribution in θA− such that

40◦ ≤ θA− ≤ 90◦ or −90◦ ≤ θA− ≤ −40◦. On taking θA− = 65◦ as the median value,

one obtains kA−⊥ /kA−∥ = 2.15. Consequently, the backward propagating Alfvén waves are

highly oblique in this sub-Alfvénic flow with those fluctuations possessing |θA−| ≥ 65◦ being

weakly propagating or advected Alfvén vortices.

The slab component is composed almost exclusively of uni-directionally propagating

forward Alfvén waves. Such unidirectionally propagating Alfvén waves should not therefore

exhibit a power law spectrum since nonlinear interactions require counter-propagating

Alfvén waves (Shebalin et al. 1983). The formation of a power law for slab turbulence with

a normalized cross helicity |σc| ∼ 1 has been addressed in detail by Zank et al. (2020b) who

argued that “scattering” and passive advection by the dominant 2D component (perhaps

better described as a generalization of sweeping, as discussed in Zhao et al. (2023b)) would

yield a power law spectrum. See also Alberti et al. (2022) for a related discussion and

somewhat different interpretation.

A measure of the accuracy of the linearized decomposition can be gleaned from a

comparison of the frequency spectrum of the transverse magnetic fluctuations derived

from a standard spectral analysis of the original data with a spectrum derived from the

summation of the mode-decomposed transverse magnetic fluctuations i.e., the transverse

magnetic fluctuations contributed by the magnetic island, Alfvén, and fast and slow ms

modes (Zank et al. 2023). Illustrated in the left panel of Figure 6 is a comparison of the

Fourier transform-derived frequency (orange line) and the mode-decomposition-constructed

PSD (black line) for transverse magnetic fluctuations for a typical 30-minute subinterval.

Evidently, the full nonlinear PSD and the mode-decomposition reconstructed PSD follow

each other very closely for the 30-minute intervals. However, an interesting question
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arises when combining the spectral results from the 10 30-minute subintervals into a

single spectrum for the full 5 hour interval of interest, as we have done in presenting the

density and the magnetic field fluctuations spectra in Figures 2 and 4. In combining the

spectral data from each of the subintervals, we have assumed implicitly that each of the

subintervals provides an independent statistical realization of an (almost) identical system

because the mean state of each subinterval does not differ significantly from any other. The

recombination then corresponds to an ensemble average, in this case constructed from the

10 30-minute subintervals. The reassembled transverse magnetic field fluctuation frequency

PSD using the spectral data from all 10 30-minute subintervals (black curve) is compared

to the Fourier-transformed spectrum derived from the full 5-hour interval (orange curve)

in Figure 6, right panel. By restricting our attention to the frequency f , we avoid the

complications of converting to wavenumber space. Relatively modest differences in spectral

amplitude are present in the “ensemble averaged” mode-decomposed spectrum and the

high-frequency part of the mode-decomposed spectrum steepens rather than flattens as in

the Fourier frequency spectrum. Nonetheless, the basic features of the two spectra are very

similar. The general conclusion is that the linear mode-decomposition captures the basic

spectral characteristics of the fully nonlinear individual 30-minute intervals very well, and

since the background states of each of the subintervals are similar, the “ensemble averaged”

PSD for the full 5-hour interval also captures the properly nonlinear spectrum rather well.

As with the prior spectral plots, we superimpose two power law curves, f−3/2 and f−5/3

to guide the eye. Finally, we repeat that mode-decomposition does not represent a model

for the behavior of fluctuations in the sub-Alfvénic flow but is simply a snapshot of the

fundamental MHD modes during a time short enough that nonlinearity is unimportant.

The decomposition of the velocity fluctuations is illustrated in Figure 7. These

comprise the parallel δufs±z and transverse δufs±x,y velocity fluctuations of the forward (+)

and backward (−) fast (f) and slow (s) ms modes, and the transverse δuA±x,y velocity
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fluctuations of the forward and backward Alfvénic modes. The fast ms modes are

primarily forward propagating and, unlike the corresponding magnetic field fluctuations,

are dominated by the transverse velocity component. By contrast, the parallel fluctuating

component dominates the velocity fluctuations of the backward and forward slow ms mode.

The dominance of the fluctuating transverse velocity component for the fast ms mode versus

the dominance of the fluctuating parallel component is evident in the wavenumber spectra

illustrated in Figure 8. Both sets of ms spectra exhibit power laws in k∥ and k⊥ with very

flat spectra, both having a power law exponent of ∼ −1.4. In this, they differ from the

incompressible transverse velocity fluctuations associated with the Alfvén modes. As with

the magnetic field fluctuations, Figures 7 and 8 show that the forward Alfvén modes is the

dominant Alfvén mode, i.e., the Alfvénic component is essentially uni-directional and thus

highly anisotropic with a slab cross helicity |σAc | ∼ 1. The contribution to the kinetic energy

spectra in both k∥ and k⊥ by the compressible transverse velocity fluctuations of the forward

fast ms modes is comparable to the incompressible transverse velocity fluctuations from

the Alfvén modes. Secondly, the ms and Alfvénic spectral slopes differ somewhat, as can

be seen from the k−1.5
∥,⊥ and k

−5/3
∥,⊥ curves superimposed over the various spectra. If nothing

else, this result suggests that, unlike the fluctuating magnetic field, the transverse velocity

fluctuations may be comprised equally of incompressible and compressible fluctuations,

both of which exhibit slightly different spectral forms in wavenumber. Consequently, this

may result in a transverse velocity variance or kinetic energy wavenumber spectrum that

looks rather different from the fluctuating transverse magnetic field variance wavenumber

spectrum that is dominated by incompressible transverse modes. Despite these very

evident differences in the wavenumber spectra, the plots in the top right panel of Figure

8 showing (black curve) the frequency PSD of the transverse fluctuating magnetic field

expressed in Alfvén units and the kinetic energy PSD for transverse velocity fluctuations

frequency PSD (orange curve) differ only in amplitude, being a factor of about two different,
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but are otherwise essentially the same with the same power law index (∼ −1.5). The

magnetic and kinetic energy PSDs were constructed from the transverse magnetic and

velocity components extracted from the mode decomposition of the magnetic island modes

(magnetic PSD only), Alfvén, and fast and slow ms modes.

A final test of the accuracy of the decomposition is illustrated in Figure 9. Here,

each of the mode-decomposed modal contributions to the normalized density, pressure,

velocity, and magnetic field fluctuations are reassembled to determine the total normalized

density, pressure, velocity, and magnetic field fluctuations. The recomposed total plasma

and magnetic field variables are then compared to the corresponding original measured

fluctuations. The measured fluctuations are illustrated in orange and labeled with the

superscript “m” and the reassembled plasma and magnetic field fluctuations are shown by

the black curve. The reconstruction of the normalized data closely reproduces the observed

data, being indistinguishable for much of the data set, giving us confidence in the efficacy

of the mode-decomposition method and assumptions.

4. Discussion and conclusions

The characterization of fluctuations in the solar wind provides considerable insight

into the nature of turbulence in a magnetofluid. By means of a novel extension of mode-

decomposition (Zank et al. 2023), we can identify and characterize the properties of entropy,

magnetic islands, forward and backward Alfvén waves, including weakly or non-propagating

Alfvén vortices, and forward and backward fast and slow magnetosonic modes. The analysis

presented here is not a theory of turbulence but merely characterized the fluctuations

within a short time interval, the “decoherence time,” during which the fluctuations in

a plasma parcel behave essentially linearly while in the parcel and do not experience

nonlinear interactions. This snapshot of the fluctuation characteristics of the plasma parcel
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has the added advantage of allowing us to exploit the dispersion relation of each mode

to relate the frequency to the wavenumber and hence construct wavenumber spectra or

PSDs for each mode from frequency spectra obtained from spacecraft observations. Our

mode-decomposition approach (Zank et al. 2023) therefore provides surprisingly detailed

insights into the fundamental building blocks of a compressible turbulent magnetofluid.

In this work, we investigate fluctuations in the first sub-Alfvénic solar wind flow

observed by PSP (Kasper et al. 2021; Zank et al. 2022; Zhao et al. 2022c; Bandyopadhyay

et al. 2022) for 5 hours on 2021 April 28. Our results, related discussion, and conclusions

are listed below.

1. The mode-decomposition has identified density fluctuations associated with entropy

modes in the sub-Alfvénic flow. In addition, we identified density fluctuations

associated with forward and backward propagating fast and slow magnetosonic

modes. The density fluctuations in this sub-Alfvénic flow are comprised primarily

and almost equally of entropy and backward propagating slow magnetosonic (ms)

modes. In a small plasma beta environment, the fast ms mode is essentially

a magnetic fluctuation whereas the slow ms mode, with a phase velocity given

approximately by V s±
p ≃ ±VA0

√
(γ/2)βp cos θ

s± = (γP0/ρ0)
1/2 cos θs± = CS0 cos θ

s±

(where CS0 =
√
γP0/ρ0 is the plasma sound speed) is almost a pure sound wave.

Hence, the fast ms mode scarcely contributes to the fluctuating density, which is due

primarily to the slow ms and entropy modes. Both the slow ms and entropy density

fluctuations possess a k−5/3 wavenumber spectrum, the latter of which is indicative

of fully developed MHD turbulence and a consequence of turbulent advection by

quasi-2D velocity fluctuations. Such a spectrum appears to be consistent with the

evolution of density fluctuations measured remotely by the Solar Orbiter instrument

Metis that show that the density spectrum evolves towards a Kolmogorov-like
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spectrum by about 3 R⊙ (Telloni et al. 2023), a region that is certainly sub-Alfvénic.

Such a spectrum indicates that the MHD turbulence is fully developed by about 3

R⊙. Both dominant density spectra show some evidence of weak or slight flattening

at larger wavenumbers.

Density fluctuations in the solar corona are particularly important in the context

of both solar radio bursts and the angular broadening and scintillation of galactic

and extra-galactic compact radio sources. Since propagating radio waves are

strongly affected by scattering, this affects the observed time characteristics, sizes,

and positions of solar radio bursts and compact radio sources (e.g., Kontar et al.

(2023) and references therein). In particular, radio observations suggest that the

density fluctuations are anisotropic in that parallel wavenumbers are smaller than

perpendicular wavenumbers (e.g., Coles & Harmon (1989); Armstrong et al. (1990)),

with possibly a more pronounced anisotropy at smaller scales. For the densities

associated with entropy fluctuations, we find a median value of θe = 166.7◦ in the

sub-Alfvénic interval, which yields a median anisotropy of |k∥/k⊥| = 4.2 (since

θe ∈ [143.3◦, 177.8◦], we have |k∥/k⊥| ∈ [1.3, 26]). Thus, k∥ ≫ k⊥ for advected

entropy-density fluctuations, which reflects the close alignment of the mean flow with

the mean magnetic field. Hence, the wavenumber anisotropy is in the opposite sense

of what is expected from or required for radio wave scattering in the corona. Consider

now the other dominant density component, the backward propagating slow ms mode,

which has a median value of θs− = 124.8◦ and θs− ranges from [123.31◦, 126.86◦].

This yields a median wavenumber anisotropy of |k∥/k⊥| = 0.7 with a range of

|k∥/k⊥| ∈ [0.65, 0.75]. Thus, the wavenumber anisotropy of the backward propagating

slow ms modes is in the sense of k⊥ > k∥. This range of values is larger than identified

by Kontar et al. (2023) who needed k∥/k⊥ = 0.25 − 0.4 to account for the shortest

solar radio burst decay times observed. Since the strongest contribution to the
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scattering of radio waves is at the ion inertial scale, perhaps about 10 km, this an

order of magnitude smaller than the smallest length scale in the mode-decomposition

analysis. Thus, it is entirely possible that the anisotropy around the ion inertial scales

may be larger. Finally, the variance anisotropy of the density associated with the

entropy, backward slow, and backward fast modes is 4.16, 0.68, and 0.68 respectively.

The wavenumber and variance anisotropy values hold over the wavenumber range

2× 10−6 ≤ k ≤ 10−2 km−1.

2. The mode-decomposition allowed us to identify magnetic islands, forward and

backward propagating Alfvén waves, including Alfvén vortices, and forward and

backward propagating fast and slow magnetosonic modes. Both the Alfvén and fast

ms waves are essentially uni-directionally propagating, with the forward propagating

mode dominant in both cases. However, the backward slow ms is the dominant

slow mode. The dominant mode for all fluctuations identified is magnetic islands.

The dominance of the magnetic islands is most apparent in the spectral plots and

we find that the variance anisotropy is ⟨δBi2⟩/⟨δBA2⟩ = 4.1, which is consistent

with the predictions of NI MHD in the small and O(1) plasma beta regimes (Zank

& Matthaeus 1993; Zank et al. 2020b) and corresponds to the 80% : 20% ratio for

2D:slab fluctuations derived by Bieber et al. (1996); Saur & Bieber (1999) from

observations at 1 au.

Finally, the spectral amplitudes per logarithmic wavenumber for incompressible

(transverse) magnetic fluctuations associated with magnetic islands and Alfvén waves

are 10 (forward fast ms mode) and 100 (backward slow ms mode) times greater than

the corresponding spectral amplitudes for compressible fluctuations. Thus, in terms

of magnetic field fluctuations, the sub-Alfvénic flow is essentially incompressible with

longitudinal fluctuations being a minority component. However, despite the forward

fast magnetosonic mode having a spectral amplitude in the fluctuating magnetic
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variance nearly an order of magnitude greater than that of the backward propagating

slow ms mode, the ordering of the spectral amplitudes for the density variance is

reversed, and dominated by the backward slow ms mode.

The incompressible magnetic island spectrum is given by a Kolmogorov-like k−1.6
⊥

spectrum, consistent with the expectations of the spectral theory for NI MHD (Zank

et al. 2020b). The idealized 2D spectrum obviously does not possess k∥ wavenumbers.

The spectral forms for the uni-directionally propagating (forward) Alfvén modes are

k−1.6
∥ and k−1.5

⊥ , with the latter spectrum exhibiting a somewhat convex profile. The

formation and power law shape of the uni-directionally propagating Alfvén wave

spectrum cannot be a consequence of oppositely propagating Alfvén waves, implying

an apparent absence of nonlinear interactions to initiate the cascade that can form

an Irshnikov-Kraichnan k−3/2 spectrum. As shown in Zank et al. (2020b), frequency

sweeping (referred to as scattering in Zank et al. (2020b)) of a uni-directional

Alfvén wave distribution by the dominant 2D fluctuations can result in a power law

distribution.

For the compressible ms modes, the energy in the longitudinal magnetic component

is slightly larger than that of the transverse components. Both the longitudinal and

transverse variances appear to have similar magnetic power law spectra with spectral

indices flatter than either −5/3 or even −3/2.

Besides being essentially uni-directional, the Alfvén and fast ms modes both propagate

at essentially the Alfvén speed VA0 (the correction to the fast ms phase speed being

∼ βp since V
f±
p ≃ VA0

[
1 + (γ/4)βp sin

2 θf±
]
). Furthermore, although the longitudinal

component of the fast ms mode magnetic field fluctuations is only modestly larger per

logarithmic wavenumber than the transverse component, the corresponding transverse

velocity components are more than two orders of magnitude larger in spectral

amplitude per logarithmic wavenumber than the longitudinal velocity component.
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Consequently, the transverse magnetic and velocity fluctuating components are

essentially anti-correlated (see Figures 3 and 7). A simple analysis of the velocity

and magnetic field data would therefore incorrectly “identify” the fast ms mode

as being an outwardly propagating Alfvén wave. This is of particular interest in

the context of characterizing the underlying nature of switchbacks (Kasper et al.

2019), which are typically taken to be Alfvénic based on the correlation of transverse

magnetic and velocity fluctuations (Kasper et al. 2019; Fisk & Kasper 2020; Tenerani

et al. 2020; McManus et al. 2020; Dudok de Wit et al. 2020). However, switchbacks

possess a longitudinal magnetic field and velocity component, often correlated, which

is inconsistent with an Alfvén wave but is consistent with a fast ms mode, leading

Zank et al. (2020a) to argue that switchbacks were rather fast ms mode structures

propagating in a small plasma beta solar wind. As shown here, fast ms modes in a

low plasma beta environment are almost indistinguishable from an Alfvén mode, both

propagating at VA0, both having anti-correlated transverse magnetic and velocity

components, but only the fast mode possesses a longitudinal magnetic and velocity

field component.

3. The mode-decomposition enables a close examination of the velocity fluctuations,

which reveals surprisingly complicated characteristics. For example, the forward fast

ms mode is dominated by the transverse velocity fluctuations, unlike the magnetic

field fluctuations for which the longitudinal component is slightly larger in spectral

amplitude per logarithmic wavenumber. By contrast, the backward propagating

slow ms mode is dominated by the longitudinal velocity fluctuations and not the

transverse components, consistent with the magnetic field fluctuations. As discussed

above, this is simply a reflection of the small plasma beta, which renders the slow

mode as essentially a sound wave modified only weakly by the magnetic field and

the sound wave as essentially a magnetic wave very similar to the Alfvén mode.
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The fast and slow ms velocity PSDs are not as flat as those for the magnetic field

fluctuations. Unlike the magnetic field fluctuations, the incompressible velocity

fluctuations are not dominant and the kinetic energy density of the backward slow

ms mode is comparable to that of the forward Alfvén mode. This is likely to make

it challenging to interpret velocity or kinetic energy spectra compared to the more

clearly distinguishable magnetic field PSDs that are dominated by the incompressible

magnetic field component. However, the mode-decomposition analysis allows one to

separate the transverse velocity components from the fast and slow ms components

and so construct the kinetic energy PSD of the transverse velocity components (i.e.,

the Alfvén velocity fluctuations and the fast and slow ms mode transverse velocity

fluctuations) exclusively. In so doing, we found that, although differing in spectral

amplitude by a factor of ∼ 2, the fluctuating transverse kinetic energy and the

magnetic field (expressed in Alfvén units) PSDs were almost identical. This is a

restatement that the fast ms mode is almost Alfvénic in that the energy density in

transverse magnetic and transverse velocity fluctuations is equal, indicating again

that short of applying a mode-decomposition analysis, it is difficult to distinguish

between Alfvén and fast ms modes in a low plasma beta region. In summary, the

mode-decomposition analysis suggests caution in interpreting kinetic energy spectra.

4. We have compared the frequency spectra for transverse magnetic field fluctuations

derived from a Fourier transform of the original data with that derived from the

mode-decomposition analysis for both the 30-minute subintervals and the full 5-hour

interval. The agreement in spectral amplitude and features for the individual

30-minute subintervals is excellent. The construction of a 5-hour mode-decomposed

frequency PSD from the 10 30-minute subintervals is effectively a form of “ensemble

averaging” of 10 realizations since the mean or background plasma parameters are

very similar for each subinterval. The agreement between the Fourier-derived and
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the mode-decomposition-derived PSDs for the 5-hour interval is good with the basic

features matching well but there is a small difference in spectral amplitude per

logarithmic wavenumber and the high-frequency part of the spectra differ in that

one flattens and the other steepens slightly. Nonetheless, these differences are not

very significant. This indicates that our choice of the “decoherence time” ∆t based

on the confinement time of fluctuations within a subinterval and on the nonlinear

and Alfvén timescales was reasonable. A comparison of the time series data based

on a reconstruction from the mode-decomposition shows excellent agreement with

the original plasma data. Both the time series and spectral comparisons give us

confidence that mode-decomposition provides an accurate snapshot and classification

of the fluctuations comprising a plasma parcel of the sub-Alfvénic solar wind.

A final point that we did not address in great detail but which nonetheless warrants

some consideration is in our use of 30-min averaged mean magnetic and plasma

variables rather than localized values. Although “semi-localized” compared to

using 5-hour mean values, it is nonetheless a global mean magnetic field and it is

well-known that using global- or local-mean field coordinates can have a significant

effect in analyzing the variance anisotropy (e.g., Oughton et al. 2015). Chaston et al.

(2020), for example, used a local mean value coordinate system at each frequency

in the spacecraft frame and time in their mode-decomposition analysis, i.e., they

determined a local mean magnetic field B0 at each wave scale of interest. This of

course has important implications for the determination of the wavenumber angles

that we calculate in our mode-decomposition analysis. While it would be interesting

to explore the use of local mean values, especially the mean magnetic field from which

the coordinate system is drawn, there is the danger that one may be violating the

basic nature of the mode-decomposition method since linearization is done on the

basis of a mean background. A more detailed analysis would be of interest in future
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work.
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APPENDIX

Several typos are present in some of the equations listed in Zank et al. (2023). Here we

provide the corrected equations needed for the mode-decomposition algorithm. A corrected

version of Zank et al. (2023), including one of the derivations, is available by request from

any of the authors listed here.

The mode-decomposition requires the inversion of the linear equation containing the

amplitude matrix A, adopting the geometry of Figure 1 in Zank et al. (2023), given by

Ax = b, where A = (aij),x = (xj),b = (bi), i, j = 1 · · · 8;

x =

(
δρe

ρ0
,
δp̂f+

ρ0a20
,
δp̂f−

ρ0a20
,
δp̂s+

ρ0a20
,
δp̂s−

ρ0a20
,
δuA+

U0

,
δuA−

U0

,
δBi

B0

)t
. (1)

The amplitude matrix contains the amplitudes and phases of the entropy, fast, and slow

magnetosonic, Alfvénic, and magnetic island modes, and the vector b is comprised of

measured plasma and magnetic field values and is given below. The elements (aij) are

derived from the MHD conservation laws and listed below – the reader is referred to

Appendix B in Zank et al. (2023) for the definitions of the various terms.
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Fig. 5.— Left: Plot of the phase angle θA+ for each of the forward Alfvén modes over the full

5-hour interval based on the set of 10 30-minute subintervals. Right: Plot of the phase angle θA−

for each of the backward Alfvén modes over the 5-hour interval.
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Fig. 6.— Left: The orange curve shows the Fourier transform-derived PSD for the transverse

magnetic field fluctuations for a 30-minute sub-interval from 10:33 to 11:03 UT on 2021-04-28. A

reconstructed spectrum for the transverse fluctuations derived from the mode-decomposition of this

30-minute subinterval is shown by the black curve, i.e., the summation of the separate magnetic

island, Alfvénic, and fast and slow ms transverse magnetic field contributions. Right: The orange

curve shows the Fourier transform-derived PSD for the transverse magnetic field fluctuations for

the original 5-hour data interval. A reconstructed spectrum for the transverse fluctuations derived

from the mode-decomposition of the 10 30-minute subintervals is shown by the black curve.
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(orange curve) (±) fast ms modes δuf±z /U0. Middle left two panels: forward and backward

transverse velocity fluctuations δuf±x,y for fast ms modes. Left bottom panel: forward (black

curve) and backward (orange curve) Alfvén (δuA±x ) modes. Top right panel: Parallel (z-) veloc-

ity component forward (black curve) and backward (orange curve) (±) slow ms modes δus±z /U0.

Middle right two panels: forward and backward transverse velocity fluctuations δus±x,y for slow

ms modes. Left bottom panel: forward (black curve) and backward (orange curve) Alfvén (δuA±y )

modes.
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Fig. 8.— PSDs for the fluctuating velocity in frequency f (top three panels), parallel wavenumber

k∥ (middle three panels), and perpendicular wavenumber k⊥ (bottom three panels). The top left

panel shows the forward Alfvén (black), forward fast (blue) and forward slow (orange) ms mode

PSDs, the top middle panel shows the backward slow (orange) and fast (blue) ms and backward

Alfvén mode PSDs. The top right panel shows a plot of the fluctuating transverse magnetic

field PSD in Alfvén units (black curve) reconstructed from the transverse magnetic fluctuations

obtained from the separate magnetic island, Alfvénic, and fast and slow ms transverse magnetic field

contributions. The orange curve shows a corresponding kinetic energy PSD reconstructed from the

transverse velocity fluctuations obtained from the mode-decomposition for the separate Alfvénic,

fast and slow ms transverse magnetic field contributions. The red and blue lines corresponds to

f−3/2, k−3/2 and f−5/3, k−5/3 power laws, respectively. The middle panels show from left to right

PSDs in k∥ of the forward and backward Alfvén modes, the parallel δuf∥ , transverse δuf⊥, and total

δuf of the forward fast mode, and the corresponding PSDs for the backward propagating slow

ms mode. The bottom panels show from left to right PSDs in k⊥ of the forward and backward

Alfvén modes, the parallel δuf∥ , transverse δuf⊥, and total δuf of the forward fast mode , and the

corresponding PSDs for the backward propagating slow ms mode.
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where

a12 =

(
1 +

1

M0

Vf+
a0

V 2
f cosϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

sinψ +
1

M0

a0
Vf+

cos θf+ cosψ

)
= a12(f+);

a16 = −βA+ sinψ = a16(A
+);

a22 = sinψ

(
1 +

1

M2
0

)
+

1 + sin2 ψ

M0

Vf+
a0

V 2
f cosϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

+
sinψ cosψ

M0

a0
Vf+

cos θf+

+
sinψ

M2
A0

V 2
f − a20 cos

2 θf+

v2f
+

cosψ

M2
A0

V 2
f cosϕf+ sin θf+ cos θf+

V 2
f − V 2

A0 cos
2 θf+

;

a26 = −
(
cosψ

MA0

+ (1 + sin2 ψ)

)
βA+; a27 =

(
cosψ

MA0

− (1 + sin2 ψ)

)
βA−;

a32 =
V 2
f sinϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

(
cosψ

M2
A0

cos θf+ +
1

Mf+(θf+)

)
; a36 =

(
1 +

cosψ

MA0

)
αA+;

a37 =

(
1− cosψ

MA0

)
αA−;

a42 = cosψ

(
1 +

1

M2
0

)
+

cosψ sinψ

M0

Vf+
a0

V 2
f cosϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

+ (1 + cos2 ψ)
a0/Vf+
M0

cos θf+

+
sinψ

M2
A0

V 2
f cosϕf+ sin θf+ cos θf+

V 2
f − V 2

A0 cos
2 θf+

− cosψ

M2
A0

V 2
f − a20 cos

2 θf+

V 2
f

;

a46 = − sinψ

(
cosψ +

1

MA0

)
βA+; a47 = − sinψ

(
cosψ − 1

MA0

)
βA−;

a52 =
1

2
+

γ

γ − 1

1

M2
0

+

(
ET
U2
0

+ 1

)
sinψ

M0

Vf+
a0

V 2
f cosϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

+

(
E0
U2
0

+ 1

)
cosψ

M0

a0
Vf+

cos θf+

+ 2
sinψ cosψ

M2
A0

V 2
f cosϕf+ sin θf+ cos θf+

V 2
f − V 2

A0 cos
2 θf+

+ 2
sin2 ψ

M2
A0

V 2
f − a20 cos

2 θf+

V 2
f

;

a56 = −
((

ET
U2
0

+ 1

)
+ 2

cosψ

MA0

)
sinψβA+; a57 = −

((
ET
U2
0

+ 1

)
− 2

cosψ

MA0

)
sinψβA−;

a62 = cosψ

(
V 2
f cosϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

(
Vf+/a0
M0

+ cosψ cos θf+
)
+ sinψ

V 2
f − a20 cos

2 θf+

V 2
f

)
;

a66 = − cosψ (1 + cosψMA0) β
A+; a67 = − cosψ (1− cosψMA0) β

A−;

a72 =
V 2
f sinϕf+ sin θf+

V 2
f − V 2

A0 cos
2 θf+

(
cosψ

M0

Vf+
a0

+ cos θf+
)
; a76 = (cosψ +MA0)α

A+;

a77 = (cosψ −MA0)α
A−;

a82 = −
V 2
f cosϕf+ sin θf+ cos θf+

V 2
f − V 2

A0 cos
2 θf+
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and E0 ≡ (1/2)U2
0 + a20/(γ − 1) and ET ≡ E0 + V 2

A0.

The source vector (bi), i = 1 · · · 8, is determined from the measured plasma and

magnetic field variables, denoted by the subscript m.

b1 =
δρ̂m
ρ0

+ sinψ
δûmx
U0

+ cosψ
δûmz
U0

;

b2 = sinψ
δρ̂m
ρ0

+
(
1 + sin2 ψ

) δûmx
U0

+ sinψ cosψ
δûmz
U0

+
sinψ

M2
0

δp̂m
ρ0a20

+
1

M2
A0

(
− cosψ

δB̂mx

B0

+ sinψ
δB̂mz

B0

)
;

b3 =
δûmy
U0

− cosψ

M2
A0

δB̂my

B0

;

b4 = cosψ
δρ̂m
ρ0

+ cosψ sinψ
δûmx
U0

+
(
1 + cos2 ψ

) δûmz
U0

+
cosψ

M2
0

δp̂m
ρ0a20

− 1

M2
A0

(
sinψ

δB̂mx

B0

+ cosψ
δB̂mz

B0

)
;

b5 =
1

2

δρ̂m
ρ0

+

(
ET
U2
0

+ 1

)
sinψ

δûmx
U0

+

(
E0
U2
0

+ 1

)
cosψ

δûmz
U0

+
γ

γ − 1

1

M2
0

δp̂m
ρ0a20

− 2
sinψ cosψ

M2
A0

δB̂mx

B0

+ 2
sin2 ψ

M2
A0

δB̂mz

B0

;

b6 = cosψ
δûmx
U0

− cos2 ψ
δB̂mx

B0

+ sinψ cosψ
δB̂mz

B0

;

b7 = cosψ
δûmy
U0

− δB̂my

B0

;

b8 =
δB̂mx

B0

.

The angles that are needed for the 8× 8 amplitude matrix A are obtained sequentially
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from the following system of equations,

• cos2 θf+ =
1

M2
0M

2
A0

(M2
0 +M2

A0) (ω
′
m/(U0kmz))

2 − 1

(ω′
m/(U0kmz))

4 ;

• cosϕf+ =
1

(ω′
m/(U0kmx))Mf (θf+) sin θf+

• θf− = π − θf+;

• ϕf− = π − ϕf+;

• cos2 θs+ =
M2

f (θ
f+)

M2
0M

2
A0

cos2 θf+
(
M2

0 +M2
A0 −M2

f (θ
f+) cos2 θf+

)
;

• cosϕs+ =
Mf (θ

f+)

Ms(θs+)

cosϕf+ sin θf+

sin θs+
;

• θs− = π − θs+;

• ϕs− = π − ϕs+;

• ϕe = 0;

• tan θe =
sinψ +Mf (θ

f+) cosϕf+ sin θf+

cosψ +Mf (θf+) cos θf+
.

The angles ϕA±, θA±, and ϕi associated with the Alfvénic and magnetic island modes are

solved iteratively from

• δûA+

U0

sinϕA+ +
δûA−

U0

sinϕA− = −δûmx
U0

+
1

Mf (θf+)

[
δp̂f+

ρ0a20
− δp̂f−

ρ0a20
+
M2

f (θ
f+)

M2
s (θ

s+)

(
δp̂s+

ρ0a20
− δp̂s−

ρ0a20

)]

× M2
A0 cosϕ

f+ sin θf+

M2
A0 −M2

f (θ
f+) cos2 θf+

;

• δûA+

U0

cosϕA+ +
δûA−

U0

cosϕA− =
δûmy
U0

−
(
δp̂f+

ρ0a20
+
δp̂f−

ρ0a20

)
1

Mf (θf+)

M2
A0 sinϕ

f+ sin θf+

M2
A0 −M2

f (θ
f+) cos2 θf+

−
(
δp̂s+

ρ0a20
+
δp̂s−

ρ0a20

)
1

Ms(θs+)

M2
A0 sinϕ

s+ sin θs+

M2
A0 −M2

s (θ
s+) cos2 θs+

;

• tan θA± =
(
cosϕA±

)−1 MA0 cosψ ± 1

MA0 cosψ

sinψ +Mf (θ
f+) cosϕf+ sin θf+

cosψ +Mf (θf+) cos θf+
;

• δB̂i

B0

cosϕi =
δB̂my

B0

+

(
δp̂f+

ρ0a20
− δp̂f−

ρ0a20

)
M2

A0 sinϕ
f+ sin θf+ cos θf+

M2
A0 −M2

f (θ
f+) cos2 θf+

+

(
δp̂s+

ρ0a20
− δp̂s−

ρ0a20

)
M2

A0 sinϕ
s+ sin θs+ cos θs+

M2
A0 −M2

s (θ
s+) cos2 θs+

+MA0

(
δûA+

U0

cosϕA+ − δûA−

U0

cosϕA−
)
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Finally, for convenience, we list the conversions that map frequency to wavenumber.

The equation numbers below refer to the equations in Zank et al. (2023).

Entropy modes: For each ω′
m, we map to the entropy wavenumber ke using equations (95),

(96), key = 0, and (97), (98) in Zank et al. (2023).

Magnetic islands: For each ω′
m, k

i
x is given by (109), ϕi by (110) (Zank et al. 2023), and ki

is determined from kix = ki cosϕi (since θi = π/2).

Fast/slow magnetosonic modes: For each of these four cases, we have kfs± = ω′
m/Vfs(θ

fs±)

and hence kfs±⊥ = kfs± sin θfs± and kfs±∥ = kfs± cos θfs±.

Alfvén modes: For each ω′
m, equations (106) and (107) provide ϕA± and (108) (Zank et al.

2023) gives θA±. Since kA+x = kA−x , we have

kA± =
(
cosϕA± sin θA±

)−1 ω′
m

U0

(
sinψ +Mf (θ

f+) cosϕf+ sin θf+
)
, (3)

giving kA±⊥ = kA± sin θA± and kA±∥ = kA± cos θA±.
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